Tuning Presets in the Sequential Prophet X
Compiled by Robert Rich, September 2018
Comments for tunings 17-65 derived from the Scala library.
Many thanks to Max Magic Microtuner for conversion assistance.
R. Rich Notes: All of the presets except for \#1 (12 Tone Equal Temperament) can be over-written by sending a tuning in the MTS format (Midi Tuning Standard.) The presets \#2-17 match the Prophet 12, P6 and OB6, and began as a selection I made for the Synthesis Technology MOTM 650 Midi-CV module. Actual program numbers within the MTS messages start at \#0 for the built-in 12ET, \#1-64 for the user tunings. The display shows these as \#2-65, with 12ET as \#1.

I intend these tunings only as an introduction, and I did not research their historical accuracy. For convenience, I used the software's default $1 / 1$ of C4 (Midi note 60), although this is not the original $1 / 1$ for some of the tunings shown. Some of these tunings come very close to standard 12 ET , and some of them are downright wacky, sometimes specific to a particular composer or piece of music. The tunings from 18 to 65 are organized only by alphabet, culled from the Scala library, not in any logical order.

1. 12 Tone Equal Temperament (non-erasable)

The default Western tuning, based on the twelfth root of two. Good fourths and fifths, horrible thirds and sixths.

2. Harmonic Series

MIDI notes 36-95 reflect harmonics 2 through 60 based on the fundamental of A $=27.5 \mathrm{~Hz}$. The low C on a standard 5 octave keyboard acts as the root note $(55 \mathrm{~Hz})$, and the harmonics play upwards from there. The remaining keys above and below the 5 octave range are filled with the same intervals as Carlos' Harmonic 12 Tone that follows.
3. Carlos Harmonic Twelve Tone

Wendy Carlos' twelve note scale based on octave-repeating harmonics. $\mathrm{A}=1 / 1$ (440 Hz).
$\begin{array}{llllllllllllll}1 / 1 & 17 / 16 & 9 / 8 & 19 / 16 & 5 / 4 & 21 / 16 & 11 / 8 & 3 / 2 & 13 / 8 & 27 / 16 & 7 / 4 & 15 / 8\end{array}$
4. Meantone Temperament

An early tempered tuning, with better thirds than 12ET. Sounds best in the key of C. Use this to add an authentic touch to performances of early Baroque music. $\mathrm{C}=1 / 1$ $(260 \mathrm{~Hz})$
5. 1/4 Tone Equal Temperament

24 notes per octave, equally spaced 24 root2 intervals. Mexican composer Julian Carillo used this for custom-built pianos in the early $20^{\text {th }}$ century.
6. 19 Tone Equal Temperament

19 notes per octave (19root2) offering better thirds than 12 ET , a better overall compromise if you can figure out the keyboard patterns.

7. 31 Tone Equal Temperament

Many people consider 31root2 to offer the best compromise towards just intonation in an equal temperament, but it can get very tricky to keep track of the intervals.

8. Pythagorean C

One of the earliest tuning systems known from history, the Pythagorean scale is constructed from an upward series of pure fifths (3/2) transposed down into a single octave. The tuning works well for monophonic melodies against fifth drones, but has a very narrow palate of good chords to choose from. . $\mathrm{C}=1 / 1(261.625 \mathrm{~Hz})$

9. Just Intonation in A with 7-limit Tritone at D\#

A rather vanilla 5-limit small interval JI, except for a single $7 / 5$ tritone at D\#, which offers some nice possibilities for rotating around bluesy sevenths. $A=1 / 1(440 \mathrm{~Hz})$

10. 3-5 Lattice in A (from Carter Scholz)

A pure 3 and 5-limit tuning which resolves to very symmetrical derived relationships between notes. $A=1 / 1(440 \mathrm{~Hz})$

11. 3-7 Lattice in A (from Carter Scholz)

A pure 3 and 7-limit tuning which resolves to very symmetrical derived relationships between notes. Some of the intervals are very close together, offering several choices for the same nominal chords. A=1/1 (440 Hz)

12. Other Music 7-Limit Black Keys in C

Created by the group Other Music for their homemade gamelan, this offers a wide range of interesting chords and modes. $\mathrm{C}=1 / 1(261.625 \mathrm{~Hz})$

13. Dan Schmidt Pelog/Slendro

Created for the Berkeley Gamelan group, this tuning fits an Indonesian-style heptatonic Pelog on the white keys and pentatonic Slendro on the black keys, with B and Bb acting as $1 / 1$ for their respective modes. Note that some of the notes will have the same frequency. By tuning the $1 / 1$ to 60 Hz , Dan found a creative way to incorporate the inevitable line hum into his scale. $\mathrm{Bb}, \mathrm{B}=1 / 1(60 \mathrm{~Hz})$ $\begin{array}{lllllllllllll}1 / 1 & 1 / 1 & 9 / 8 & 7 / 6 & 5 / 4 & 4 / 3 & 11 / 8 & 3 / 2 & 3 / 2 & 7 / 4 & 7 / 4 & 15 / 8\end{array}$

14. Yamaha Just Major C

When Yamaha decided to put preset microtunings into their FM synth product line, they selected this and the following tuning as representative just intonations. As such, they became the de-facto introduction to JI for many people. Just Major gives preferential treatment to major thirds on the sharps, and a good fourth relative to the second. $\mathrm{C}=1 / 1$ (261.625)
$\begin{array}{llllllllllll}1 / 1 & 16 / 15 & 9 / 8 & 6 / 5 & 5 / 4 & 4 / 3 & 45 / 32 & 3 / 2 & 8 / 5 & 5 / 3 & 16 / 9 & 15 / 8\end{array}$
15. Yamaha Just Minor C

Similar to Yamaha's preset Just Major, the Just Minor gives preferential treatment to minor thirds on the sharps, and has a good fifth relative to the second. $\mathrm{C}=1 / 1$ (261.625) $\begin{array}{lllllllllllll}1 / 1 & 25 / 24 & 10 / 9 & 6 / 5 & 5 / 4 & 4 / 3 & 45 / 32 & 3 / 2 & 8 / 5 & 5 / 3 & 16 / 9 & 15 / 8\end{array}$
16. Harry Partch 11-limit 43 Note Just Intonation

One of the pioneers of modern microtonal composition, Partch built a unique orchestra with this tuning during the first half of the $20^{\text {th }}$ century, to perform his own compositions. The large number of intervals in this very dense scale offers a full vocabulary of expressive chords and complex key changes. The narrow spacing also allows fixed-pitched instruments like marimbas and organs to perform glissando-like passages. $\mathrm{G}=1 / 1(392 \mathrm{~Hz}$, MIDI note 67)
$\begin{array}{lllllllllllllllll}1 / 1 & 81 / 80 & 33 / 32 & 21 / 20 & 16 / 15 & 12 / 11 & 11 / 10 & 10 / 9 & 9 / 8 & 8 / 7 & 7 / 6 & 32 / 27\end{array}$
$\begin{array}{llllllllllll}6 / 5 & 11 / 9 & 5 / 4 & 14 / 11 & 9 / 7 & 21 / 16 & 4 / 3 & 27 / 20 & 11 / 8 & 7 / 5 & 10 / 7 & 16 / 11\end{array}$
$\begin{array}{lllllllllll} & 40 / 27 & 3 / 2 & 32 / 21 & 14 / 9 & 11 / 7 & 8 / 5 & 18 / 11 & 5 / 3 & 27 / 16 & 12 / 7\end{array} 7 / 4 \quad 16 / 9$
$\begin{array}{llllllll}9 / 5 & 20 / 11 & 11 / 6 & 15 / 8 & 40 / 21 & 64 / 33 & 160 / 81\end{array}$
17. Arabic 12-Tone

A 12-tone approximation of an Arabic scale, which appears in some electronic keyboards designed for use with Arabic music. Not a JI scale, nor equal tempered. These are the intervals in Cents relative to C :
$60=$ Cents 0.
$61=$ Cents +151 .
$62=$ Cents +204 .
$63=$ Cents +294.
$64=$ Cents +355 .
$65=$ Cents +498 .
$66=$ Cents +649 .
$67=$ Cents +702 .
$68=$ Cents +853 .
$69=$ Cents +906.
$70=$ Cents +996 .
$71=$ Cents +1057 .
$72=$ Cents +1200 .
18. 12 out of $19-t E T$ scale from Mandelbaum's dissertation

An interesting non-just 12 tone scale that has some unusual relationships.
note $0=0$
note $1=63$
note $2=189$
note $3=253$
note $4=379$
note $5=505$
note $6=568$
note $7=695$
note $8=758$
note $9=884$
note $10=947$
note $11=1074$
note $12=1200$
19. 12 out of 31 -tET, meantone Eb-G\#
note $0=0$
note $1=77$
note $2=194$
note $3=310$
note $4=387$
note $5=503$
note $6=581$
note $7=697$
note $8=774$
note $9=890$
note $10=1006$
note 11=1084
note $12=1200$
20. Terry Riley's Harp of New Albion scale, inverse Malcolm's Monochord, Original $1 / 1$ on $\mathrm{C} \#$, here it is set to C .
$60=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$61=$ Cents $+111.731285 \quad$ Ratio: 16/15 (JUST)
$62=$ Cents $+203.910002 \quad$ Ratio: 9/8 (JUST)
$63=$ Cents $+315.641287 \quad$ Ratio: $6 / 5$ (JUST)
$64=$ Cents $+386.313714 \quad$ Ratio: 5/4 (JUST)
$65=$ Cents $+498.044999 \quad$ Ratio: $4 / 3$ (JUST)
$66=$ Cents $+609.776284 \quad$ Ratio: 64/45 (JUST)
$67=$ Cents $+701.955001 \quad$ Ratio: $3 / 2$ (JUST)
$68=$ Cents $+813.686286 \quad$ Ratio: 8/5 (JUST)

$69=$ Cents +884.358713	Ratio: $5 / 3$ (JUST)
$70=$ Cents +996.089998	Ratio: $16 / 9$ (JUST)
$71=$ Cents +1088.268715	Ratio: $15 / 8$ (JUST)
$72=$ Cents +1200.	Ratio: $2 / 1$ (JUST)

21. Lute tuning of Giovanni Maria Artusi (1603). 1/4-comma w. acc. 1/2-way naturals $60=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$61=$ Cents $+96.578 \quad$ Ratio: 8607/8140
$62=$ Cents $+193.157 \quad$ Ratio: 2889/2584
$63=$ Cents $+289.735 \quad$ Ratio: 11687/9886
$64=$ Cents $+386.313714 \quad$ Ratio: 5/4 (JUST)
$65=$ Cents $+503.422 \quad$ Ratio: 5267/3938
$66=$ Cents $+600 . \quad$ Ratio: 11482/8119
$67=$ Cents $+696.578 \quad$ Ratio: 7876/5267
$68=$ Cents $+793.157 \quad$ Ratio: 14771/9342
$69=$ Cents $+889.735 \quad$ Ratio: 11718/7009
$70=$ Cents $+986.314 \quad$ Ratio: 17561/9934
$71=$ Cents $+1082.892 \quad$ Ratio: 18204/9739
$72=$ Cents $+1200 . \quad$ Ratio: $2 / 1$ (JUST)
22. J.S. Bach "well temperament", acc. to Jacob Breetvelt's Tuner
$60=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$61=$ Cents $+92.18 \quad$ Ratio: 10472/9929
$62=$ Cents $+200 . \quad$ Ratio: 5252/4679
$63=$ Cents $+296.09 \quad$ Ratio: 11781/9929
$64=$ Cents $+390.225 \quad$ Ratio: 9638/7693
$65=$ Cents $+500 . \quad$ Ratio: 6793/5089
$66=$ Cents $+590.225 \quad$ Ratio: $45 / 32$ (just)
$67=$ Cents $+700 . \quad$ Ratio: 10178/6793
$68=$ Cents $+794.135 \quad$ Ratio: 15708/9929
$69=$ Cents $+895.1125 \quad$ Ratio: 14857/8859
$70=$ Cents $+998.045 \quad$ Ratio: 12503/7025
$71=$ Cents $+1090.225 \quad$ Ratio: 18484/9847
$72=$ Cents $+1200 . \quad$ Ratio: $2 / 1$ (JUST)
23. Bulgarian bagpipe tuning, empirically measured.
$0=$ Cents 0 .
Ratio: 1/1 (JUST)
$1=$ Cents +66 .
Ratio: 5427/5224
$2=$ Cents +202 .
Ratio: 1925/1713
$3=$ Cents +316 .
Ratio: 11586/9653
$4=$ Cents +399 .
Ratio: 4965/3943
$5=$ Cents +509 .
Ratio: 7451/5553
$6=$ Cents $+640 . \quad$ Ratio: 13435/9283
$7=$ Cents +706 .
Ratio: 857/570

$$
\begin{array}{rlrl}
8 & =\text { Cents }+803 . & & \text { Ratio: } 2681 / 1686 \\
9 & =\text { Cents }+910 . & & \text { Ratio: } 12130 / 7171 \\
10 & =\text { Cents }+1011 . & & \text { Ratio: } 1205 / 672 \\
11 & =\text { Cents }+1092 . & & \text { Ratio: } 12599 / 6705 \\
12=\text { Cents }+1200 . & & \text { Ratio: } 2 / 1 \text { (JUST) }
\end{array}
$$

24. Wendy Carlos' Alpha scale with perfect fifth divided in nine. 19 Tone cycle.

Octaves are stretched, and the tuning is quite microtonal (First repeat shown.)

$0=$ Cents 0.	Ratio: $1 / 1(\mathrm{JUST})$
$1=$ Cents +78.	Ratio: $7241 / 6922$
$2=$ Cents +156.	Ratio: $8994 / 8219$
$3=$ Cents +234.	Ratio: $10686 / 9335$
$4=$ Cents +312.	Ratio: $11873 / 9915$
$5=$ Cents +390.	Ratio: $11636 / 9289$
$6=$ Cents +468.	Ratio: $13024 / 9939$
$7=$ Cents +546.	Ratio: $12433 / 9070$
$8=$ Cents +624.	Ratio: $11605 / 8093$
$9=$ Cents +702.	Ratio: $14999 / 9999$
$10=$ Cents +780.	Ratio: $3471 / 2212$
$11=$ Cents +858.	Ratio: $15361 / 9358$
$12=$ Cents +936.	Ratio: $11467 / 6678$
$13=$ Cents +1014.	Ratio: $17889 / 9959$
$14=$ Cents +1092.	Ratio: $12599 / 6705$
$15=$ Cents +1170.	Ratio: $18593 / 9459$
$16=$ Cents +1248.	Ratio: $14957 / 7274$
$17=$ Cents +1326.	Ratio: $8049 / 3742$
$18=$ Cents +1404.	Ratio: $9617 / 4274$
$19=$ Cents +1482.	Ratio: $1111 / 472$

25. Wendy Carlos' Beta scale with perfect fifth divided by eleven. 23 tone cycle.

Octaves are stretched, and the tuning is quite microtonal (First repeat shown.)
$0=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$1=$ Cents $+63.8 \quad$ Ratio: 6191/5967
$2=$ Cents $+127.6 \quad$ Ratio: 9725/9034
$3=$ Cents $+191.4 \quad$ Ratio: 7739/6929
$4=$ Cents $+255.2 \quad$ Ratio: 8821/7612
$5=$ Cents $+319 . \quad$ Ratio: 7636/6351
$6=$ Cents $+382.8 \quad$ Ratio: 11690/9371
$7=$ Cents $+446.6 \quad$ Ratio: 9007/6959
$8=$ Cents $+510.4 \quad$ Ratio: 1500/1117
$9=$ Cents $+574.2 \quad$ Ratio: 13547/9723
$10=$ Cents $+638 . \quad$ Ratio: 12529/8667
$11=$ Cents $+701.8 \quad$ Ratio: 5584/3723
$12=$ Cents $+765.6 \quad$ Ratio: 9281/5964
$13=$ Cents $+829.4 \quad$ Ratio: $15760 / 9761$

$14=$ Cents +893.2	Ratio: $1047 / 625$
$15=$ Cents +957.	Ratio: $9629 / 5540$
$16=$ Cents +1020.8	
Ratio: $16551 / 9178$	
$17=$ Cents +1084.6	
$18=$ Ratio: $16263 / 8692$	
19	$=$ Cents +1148.4
	Ratio: $13585 / 6998$
$20=$ Cents +1276.	
$21=$ Ratio: $17231 / 8555$	
$22=$ Cents +1339.8	
Ratio: $12503 / 5983$	
23	$=$ Centio: $10583 / 4881$
Cents +1403.6	
Ratio: $12564 / 5585$	
Ratio: $8727 / 3739$	

26. Wendy Carlos' Gamma scale with third divided by eleven or fifth by twenty. 36 tone.

Octaves are stretched, and the tuning is quite microtonal (First repeat shown.)

$0=$ Cents 0.	Ratio: $1 / 1($ JUST $)$
$1=$ Cents +35.099	Ratio: $1146 / 1123$
$2=$ Cents +70.198	Ratio: $7449 / 7153$
$3=$ Cents +105.297	Ratio: $4118 / 3875$
$4=$ Cents +140.396	Ratio: $475 / 438$
$5=$ Cents +175.495	Ratio: $5363 / 4846$
$6=$ Cents +210.594	Ratio: $3990 / 3533$
$7=$ Cents +245.693	Ratio: $11307 / 9811$
$8=$ Cents +280.792	Ratio: $4495 / 3822$
$9=$ Cents +315.891	Ratio: $9707 / 8088$
$10=$ Cents +350.99	Ratio: $1989 / 1624$
$11=$ Cents +386.089	Ratio: $1926 / 1541$
$12=$ Cents +421.188	Ratio: $7321 / 5740$
$13=$ Cents +456.287	Ratio: $2089 / 1605$
$14=$ Cents +491.386	Ratio: $8563 / 6447$
$15=$ Cents +526.485	Ratio: $6117 / 4513$
$16=$ Cents +561.584	Ratio: $148 / 107$
$17=$ Cents +596.683	Ratio: $2895 / 2051$
$18=$ Cents +631.782	Ratio: $7627 / 5295$
$19=$ Cents +666.881	Ratio: $13901 / 9457$
$20=$ Cents +701.98	Ratio: $3 / 2(j u s t)$
$21=$ Cents +737.079	Ratio: $5477 / 3578$
$22=$ Cents +772.178	Ratio: $6981 / 4469$
$23=$ Cents +807.277	Ratio: $14613 / 9167$
$24=$ Cents +842.376	Ratio: $10660 / 6553$
$25=$ Cents +877.475	Ratio: $1255 / 756$
$26=$ Cents +912.574	Ratio: $3959 / 2337$
$27=$ Cents +947.673	Ratio: $16513 / 9552$
$28=$ Cents +982.772	Ratio: $15424 / 8743$
$29=$ Cents +1017.871	Ratio: $7563 / 4201$
$30=$ Cents +1052.97	Ratio: $7367 / 4010$
$31=$ Cents +1088.069	Ratio: $11918 / 6357$
$32=$ Cents +1123.168	Ratio: $13310 / 6957$

$$
\begin{array}{ll}
33=\text { Cents }+1158.267 & \\
34=\text { Ratio: } 17050 / 8733 \\
35=\text { Cents }+1193.366 & \\
\text { Ratio: } 14586 / 7321 \\
36=\text { Cents }+1228.465 & \\
\text { Ratio: } 13368 / 6575 \\
\text { Ratio: } 1276 / 615
\end{array}
$$

27. Carlos Super Just $60=$ Cents 0 .	Ra
$61=$ Cents +104.95541	Ratio: 17/16 (JUST)
$62=$ Cents +203.910002	2 Ratio: 9/8 (JUST)
$63=$ Cents +315.641287	Ratio: 6/5 (JUST)
$64=$ Cents +386.313714	4 Ratio: 5/4 (JUST)
$65=$ Cents +498.044999	Ratio: 4/3 (JUST)
$66=$ Cents +551.317942	2 Ratio: 11/8 (JUST)
$67=$ Cents +701.955001	1 Ratio: 3/2 (JUST)
$68=$ Cents +840.527662	Ratio: 13/8 (JUST)
$69=$ Cents +884.358713	Ratio: 5/3 (JUST)
$70=$ Cents +968.825906	Ratio: 7/4 (JUST)
$71=$ Cents +1088.268715	15 Ratio: 15/8 (JUST)
$72=$ Cents +1200.	Ratio: 2/1 (JUST)

28. Jon Catler 24-tone JI from "Over and Under the 13 Limit"
$60=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)

3.272943	R
$62=$ Cents +111.731285	Ratio: 16/15 (JUST)
$63=$ Cents +203.910002	Ratio: 9/8 (JUST)
$64=$ Cents +231.174094	Ratio: 8/7 (JUST)
$65=$ Cents +266.870906	Ratio: 7/6 (JUST)
$66=$ Cents +315.641287	Ratio: 6/5 (JUST)
$67=$ Cents +342.905379	Ratio: 128/105
$68=$ Cents +359.472338	Ratio: 16/13 (JUST)
$69=$ Cents +386.313714	Ratio: 5/4 (JUST)
$70=$ Cents +470.780907	Ratio: 21/16 (JUST)
$71=$ Cents +498.044999	Ratio: 4/3 (JUST)
$72=$ Cents +551.317942	Ratio: 11/8 (JUST)
$73=$ Cents +590.223716	Ratio: 45/32 (JUST)
$74=$ Cents +648.682058	Ratio: 16/11 (JUST)
$75=$ Cents +701.955001	Ratio: 3/2 (JUST)
$76=$ Cents +813.686286	Ratio: 8/5 (JUST)
$77=$ Cents +840.527662	Ratio: 13/8 (JUST)
$78=$ Cents +884.358713	Ratio: 5/3 (JUST)
$79=$ Cents +905.865003	Ratio: 27/16 (JUST)
$80=$ Cents +968.825906	Ratio: 7/4 (JUST)
$81=$ Cents +996.089998	Ratio: 16/9 (JUST)

$$
\begin{array}{lc}
82=\text { Cents }+1061.427339 & \text { Ratio: } 24 / 13 \text { (JUST) } \\
83=\text { Cents }+1088.268715 & \text { Ratio: } 15 / 8 \text { (JUST) } \\
84=\text { Cents }+1200 . & \text { Ratio: } 2 / 1(\text { JUST) }
\end{array}
$$

29. John Chalmers JI-1, Based loosely on Wronski's and similar JI scales, May 2, 1997. (Chalmer's book "Divisions of the Tetrachord" is a late $20^{\text {th }}$ century masterwork, exploring the mathematical underpinnings of just tunings.)
```
60= Cents 0. Ratio: 1/1 (JUST)
61 = Cents +104.95541 Ratio: 17/16 (JUST)
62 = Cents +203.910002 Ratio: 9/8 (JUST)
63 = Cents +297.513016 Ratio: 19/16 (JUST)
64 = Cents +386.313714 Ratio: 5/4 (JUST)
65 = Cents +498.044999 Ratio: 4/3 (JUST)
66 = Cents +603.000409 Ratio: 17/12 (JUST)
67 = Cents +701.955001 Ratio: 3/2 (JUST)
68= Cents +795.558015 Ratio: 19/12 (JUST)
69 = Cents +884.358713 Ratio: 5/3 (JUST)
70 = Cents +999.468017 Ratio: 57/32 (JUST)
71 = Cents +1088.268715 Ratio: 15/8 (JUST)
72 = Cents +1200. Ratio: 2/1 (JUST)
```

30. John Chalmers JI-3, 15161718192021 on 1/1, 15-20 on 3/2, May 2, 1997.

Ratio: 1/1 (JUST)	
$61=$ Cents +111.731285	Ratio: 16/15 (JUST)
$62=$ Cents +216.686695	Ratio: 17/15 (JUST)
$63=$ Cents +315.641287	Ratio: 6/5 (JUST)
$64=$ Cents +409.244301	Ratio: 19/15 (JUST)
$65=$ Cents +498.044999	Ratio: 4/3 (JUST)
$66=$ Cents +582.512193	Ratio: 7/5 (JUST)
$67=$ Cents +701.955001	Ratio: 3/2 (JUST)
$68=$ Cents +813.686286	Ratio: 8/5 (JUST)
$69=$ Cents +918.641696	Ratio: 17/10 (JUST)
$70=$ Cents +1017.596288	Ratio: 9/5 (JUST)
$71=$ Cents +1111.199302	Ratio: 19/10 (JUST)
$72=$ Cents +1200.	Ratio: 2/1 (JUST)

31. John Chalmers JI-4, 151617181920 on $1 / 1$, same on $4 / 3,+16 / 15$ on $16 / 9$
$60=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$61=$ Cents $+111.731285 \quad$ Ratio: $16 / 15$ (JUST)
$62=$ Cents $+216.686695 \quad$ Ratio: $17 / 15$ (JUST)
$63=$ Cents $+315.641287 \quad$ Ratio: $6 / 5$ (JUST)
$64=$ Cents $+409.244301 \quad$ Ratio: 19/15 (JUST)
$65=$ Cents $+498.044999 \quad$ Ratio: $4 / 3$ (JUST)

$$
\begin{array}{ll}
66=\text { Cents }+609.776284 & \\
\text { Ratio: } 64 / 45 \text { (JUST) } \\
67=\text { Cents }+714.731694 & \\
\text { Ratio: } 68 / 45 \text { (JUST) } \\
68=\text { Cents }+813.686286 & \\
\text { Ratio: } 8 / 5 \text { (JUST) } \\
69=\text { Cents }+907.289301 & \\
\text { Ratio: } 76 / 45 \text { (JUST) } \\
70=\text { Cents }+996.089998 & \text { Ratio: } 16 / 9 \text { (JUST) } \\
71=\text { Cents }+1107.821284 & \text { Ratio: } 256 / 135 \\
72=\text { Cents }+1200 . & \text { Ratio: } 2 / 1 \text { (JUST) }
\end{array}
$$

32. Chinese scale, 4th century
$0=$ Cents 0 .
Ratio: 1/1 (JUST)
$1=$ Cents +99.2
Ratio: 3735/3527
$2=$ Cents $+199.5 \quad$ Ratio: 11126/9915
$3=$ Cents $+296.7 \quad$ Ratio: 9181/7735
$4=$ Cents $+398 . \quad$ Ratio: $10405 / 8268$
$5=$ Cents $+492.9 \quad$ Ratio: 448/337
$6=$ Cents $+595.2 \quad$ Ratio: 11312/8021
$7=$ Cents $+699 . \quad$ Ratio: 6439/4300
$8=$ Cents $+790.9 \quad$ Ratio: 7578/4799
$9=$ Cents $+896.1 \quad$ Ratio: 15436/9199
$10=$ Cents $+984.9 \quad$ Ratio: 6357/3599
$11=$ Cents $+1091.4 \quad$ Ratio: $1591 / 847$
$12=$ Cents $+1200 . \quad$ Ratio: $2 / 1$ (JUST)
33. Chinese Lu scale by Huai Nan Zi, Han era. (P. Amiot 1780, Kurt Reinhard)
$60=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$61=$ Cents $+98.954592 \quad$ Ratio: 18/17 (JUST)
$62=$ Cents $+203.910002 \quad$ Ratio: 9/8 (JUST)
$63=$ Cents $+315.641287 \quad$ Ratio: 6/5 (JUST)
$64=$ Cents $+394.347297 \quad$ Ratio: 54/43 (JUST)
$65=$ Cents $+498.044999 \quad$ Ratio: $4 / 3$ (JUST)
$66=$ Cents $+608.351986 \quad$ Ratio: 27/19 (JUST)
$67=$ Cents $+701.955001 \quad$ Ratio: $3 / 2$ (JUST)
$68=$ Cents $+800.909593 \quad$ Ratio: 27/17 (JUST)
$69=$ Cents $+905.865003 \quad$ Ratio: 27/16 (JUST)
$70=$ Cents $+1017.596288 \quad$ Ratio: $9 / 5$ (JUST)
$71=$ Cents $+1106.396986 \quad$ Ratio: 36/19 (JUST)
$72=$ Cents $+1200 . \quad$ Ratio: $2 / 1$ (JUST)
34. Colonna 1

Fabio Colonna lived in Naples, and published a treatise in 1618 called "La Sambuca Lincea", which included a description of the instrument by that name which he built on commission from Scipione Stella, who had had the opportunity in 1594 to examine

Vincentino's 'Archicembalo', a 31-tone-per-octave (not equal-tempered) keyboard instrument.

```
60= Cents 0. Ratio: 1/1 (JUST)
61 = Cents +70.672427 Ratio: 25/24 (JUST)
62 = Cents +182.403712 Ratio: 10/9 (JUST)
63= Cents +287.359122 Ratio: 85/72 (JUST)
64 = Cents +386.313714 Ratio: 5/4 (JUST)
65= Cents +498.044999 Ratio: 4/3 (JUST)
66 = Cents +568.717426 Ratio: 25/18 (JUST)
67 = Cents +701.955001 Ratio: 3/2 (JUST)
68= Cents +733.721654 Ratio: 55/36 (JUST)
69 = Cents +884.358713 Ratio: 5/3 (JUST)
70 = Cents +989.314122 Ratio: 85/48 (JUST)
71 = Cents +1088.268715 Ratio: 15/8 (JUST)
72 = Cents +1200. Ratio: 2/1 (JUST)
```

35. Colonna 2 - Second 12 note subset of the Colonna scale
$60=$ Cents $0 . \quad$ Ratio: 1/1 (JUST)
$61=$ Cents $+70.672427 \quad$ Ratio: 25/24 (JUST)
$62=$ Cents $+203.910002 \quad$ Ratio: 9/8 (JUST)
$63=$ Cents $+315.641287 \quad$ Ratio: $6 / 5$ (JUST)
$64=$ Cents $+386.313714 \quad$ Ratio: 5/4 (JUST)
$65=$ Cents $+498.044999 \quad$ Ratio: $4 / 3$ (JUST)
$66=$ Cents $+582.512193 \quad$ Ratio: 7/5 (JUST)
$67=$ Cents $+701.955001 \quad$ Ratio: 3/2 (JUST)
$68=$ Cents $+813.686286 \quad$ Ratio: $8 / 5$ (JUST)
$69=$ Cents $+884.358713 \quad$ Ratio: $5 / 3$ (JUST)
$70=$ Cents $+1017.596288 \quad$ Ratio: 9/5 (JUST)
$71=$ Cents $+1049.362941 \quad$ Ratio: 11/6 (JUST)
$72=$ Cents $+1200 . \quad$ Ratio: $2 / 1$ (JUST)
36. Ivor Darreg was one of the great modern theorists of just intonation. This set of 19 ratios in 5 -limit JI is for his megalyra family.
```
60= Cents 0. Ratio: 1/1 (JUST)
61 = Cents +70.672427 Ratio: 25/24 (JUST)
62 = Cents +111.731285 Ratio: 16/15 (JUST)
63 = Cents +182.403712 Ratio: 10/9 (JUST)
64 = Cents +203.910002 Ratio: 9/8 (JUST)
65 = Cents +274.582429 Ratio: 75/64 (JUST)
66 = Cents +315.641287 Ratio: 6/5 (JUST)
67 = Cents +386.313714 Ratio: 5/4 (JUST)
68 = Cents +498.044999 Ratio: 4/3 (JUST)
69 = Cents +590.223716 Ratio: 45/32 (JUST)
70 = Cents +609.776284 Ratio: 64/45 (JUST)
```

$71=$ Cents +701.955001	
Ratio: $3 / 2$ (JUST)	
$72=$ Cents +772.627428	
Ratio: $25 / 16$ (JUST)	
$73=$ Cents +813.686286	
$74=$ Ratio: $8 / 5$ (JUST)	
$75=$ Cents +884.358713	
Ratio: $5 / 3$ (JUST)	
$76=$ Cents +905.865003	
Ratio: $27 / 16$ (JUST)	
$77=$ Cents +1017.5962828	
$78=$ Ratio: $225 / 128$	
$78=$ Cents +1088.268715	Ratio: $9 / 5$ (JUST)
$79 / 8$ (JUST)	
	Ratio: $2 / 1$ (JUST)

37. Dorian Diatonic Tonos

$60=$ Cents 0 .	Ra
$61=$ Cents +111.731285	Ratio: 16/15 (JUST)
$62=$ Cents +231.174094	Ratio: 8/7 (JUST)
$63=$ Cents +359.472338	Ratio: 16/13 (JUST)
$64=$ Cents +427.372572	Ratio: 32/25 (JUST)
$65=$ Cents +498.044999	Ratio: 4/3 (JUST)
$66=$ Cents +571.725653	Ratio: 32/23 (JUST)
$67=$ Cents +648.682058	Ratio: 16/11 (JUST)
$68=$ Cents +813.686286	Ratio: 8/5 (JUST)
$69=$ Cents +902.486984	Ratio: 32/19 (JUST)
$70=$ Cents +996.089998	Ratio: 16/9 (JUST)
$71=$ Cents +1095.04459	Ratio: 32/17 (JUST)
$72=$ Cents +1200.	Ratio: 2/1 (JUST)

38. Almost equal 12-tone subset of Duodenarium
$60=$ Cents $0 . \quad$ Ratio: 1/1 (JUST)
$61=$ Cents $+92.178716 \quad$ Ratio: 135/128
$62=$ Cents $+203.910002 \quad$ Ratio: 9/8 (JUST)
$63=$ Cents $+296.088718 \quad$ Ratio: 1215/1024
$64=$ Cents $+405.866283 \quad$ Ratio: 512/405
$65=$ Cents $+498.044999 \quad$ Ratio: $4 / 3$ (JUST)
$66=$ Cents $+609.776284 \quad$ Ratio: 64/45 (JUST)
$67=$ Cents $+701.955001 \quad$ Ratio: 3/2 (JUST)
$68=$ Cents $+794.133717 \quad$ Ratio: $405 / 256$
$69=$ Cents $+903.911282 \quad$ Ratio: 2048/1215
$70=$ Cents $+998.043719 \quad$ Ratio: 3645/2048
$71=$ Cents $+1107.821284 \quad$ Ratio: 256/135
$72=$ Cents $+1200 . \quad$ Ratio: $2 / 1$ (JUST)
39. Ellis's Just Harmonium
$60=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$61=$ Cents $+111.731285 \quad$ Ratio: $16 / 15$ (JUST)
$62=$ Cents $+203.910002 \quad$ Ratio: 9/8 (JUST)

$63=$ Cents +315.641287	
$64=$ Ratio: $6 / 5$ (JUST)	
$65=$ Cents +386.313714	Ratio: $5 / 4$ (JUST)
$66=$ Cents +598.044999	Ratio: $4 / 3$ (JUST)
$67=$ Cents +701.955001	Ratio: $27 / 20$ (JUST)
$68=$ Cents +813.686286	Ratio: $3 / 2$ (JUST) $8 / 5$ (JUST)
$69=$ Cents +884.358713	Ratio: $5 / 3$ (JUST)
$70=$ Cents +1017.596288	Ratio: $9 / 5$ (JUST)
$71=$ Cents +1088.268715	Ratio: $15 / 8$ (JUST)
$72=$ Cents +1200.	Ratio: $2 / 1$ (JUST)

40. Bali/Java Slendro, Siam 7, empirical

0	$=$ Cents 0.	Ratio: $1 / 1$ (JUST)
61	$=$ Cents +111.731285	Ratio: $16 / 15$ (JUST)
$62=$ Cents +203.910002	Ratio: $9 / 8$ (JUST)	
$63=$ Cents +315.641287	Ratio: $6 / 5$ (JUST)	
$64=$ Cents +386.313714	Ratio: $5 / 4$ (JUST)	
$65=$ Cents +498.044999	Ratio: $4 / 3$ (JUST)	
$66=$ Cents +519.551289	Ratio: $27 / 20$ (JUST)	
$67=$ Cents +701.955001	Ratio: $3 / 2$ (JUST)	
$68=$ Cents +813.686286	Ratio: $8 / 5$ (JUST)	
$69=$ Cents +884.358713	Ratio: $5 / 3$ (JUST)	
$70=$ Cents +1017.596288	Ratio: $9 / 5$ (JUST)	
$71=$ Cents +1088.268715	Ratio: $15 / 8$ (JUST)	
$72=$ Cents +1200.	Ratio: $2 / 1$ (JUST)	

41. Tibetian Ceremonial, empirical
$0=$ Cents $0 . \quad$ Ratio: 1/1 (JUST)
$1=$ Cents $+58 . \quad$ Ratio: 2762/2671
$2=$ Cents $+232 . \quad$ Ratio: 6889/6025
$3=$ Cents $+310 . \quad$ Ratio: 10601/8863
$4=$ Cents $+378 . \quad$ Ratio: 11945/9602
$5=$ Cents $+522 . \quad$ Ratio: 849/628
$6=$ Cents $+618 . \quad$ Ratio: 483/338
$7=$ Cents $+725 . \quad$ Ratio: 605/398
$8=$ Cents $+773 . \quad$ Ratio: 13070/8363
$9=$ Cents $+896 . \quad$ Ratio: $14076 / 8389$
$10=$ Cents $+1019 . \quad$ Ratio: 12585/6986
$11=$ Cents $+1086 . \quad$ Ratio: 16205/8654
42. Erlangen, revised
$60=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$61=$ Cents $+92.178716 \quad$ Ratio: 135/128

$$
\begin{array}{ll}
62=\text { Cents }+203.910002 & \text { Ratio: } 9 / 8 \text { (JUST) } \\
63=\text { Cents }+294.134997 & \text { Ratio: } 32 / 27 \text { (JUST) } \\
64=\text { Cents }+386.313714 & \text { Ratio: } 5 / 4 \text { (JUST) } \\
65=\text { Cents }+498.044999 & \text { Ratio: } 4 / 3 \text { (JUST) } \\
66=\text { Cents }+590.223716 & \text { Ratio: } 45 / 32 \text { (JUST) } \\
67=\text { Cents }+701.955001 & \text { Ratio: } 3 / 2 \text { (JUST) } \\
68=\text { Cents }+794.133717 & \text { Ratio: } 405 / 256 \\
69=\text { Cents }+905.865003 & \text { Ratio: } 27 / 16 \text { (JUST) } \\
70=\text { Cents }+996.089998 & \text { Ratio: } 16 / 9 \text { (JUST) } \\
71=\text { Cents }+1088.268715 & \text { Ratio: } 15 / 8 \text { (JUST) } \\
72=\text { Cents }+1200 . & \text { Ratio: } 2 / 1 \text { (JUST) }
\end{array}
$$

43. Euler - Monochord (1739)
$60=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$61=$ Cents $+70.672427 \quad$ Ratio: 25/24 (JUST)
$62=$ Cents $+203.910002 \quad$ Ratio: 9/8 (JUST)
$63=$ Cents $+274.582429 \quad$ Ratio: 75/64 (JUST)
$64=$ Cents $+386.313714 \quad$ Ratio: 5/4 (JUST)
$65=$ Cents $+498.044999 \quad$ Ratio: $4 / 3$ (JUST)
$66=$ Cents $+590.223716 \quad$ Ratio: $45 / 32$ (JUST)
$67=$ Cents $+701.955001 \quad$ Ratio: $3 / 2$ (JUST)
$68=$ Cents $+772.627428 \quad$ Ratio: $25 / 16$ (JUST)
$69=$ Cents $+884.358713 \quad$ Ratio: $5 / 3$ (JUST)
$70=$ Cents $+976.537429 \quad$ Ratio: 225/128
$71=$ Cents $+1088.268715 \quad$ Ratio: 15/8 (JUST)
$72=$ Cents $+1200 . \quad$ Ratio: $2 / 1$ (JUST)
44. Bagpipe tuning from Fortuna ("try key of G with F natural")

$60=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)	
$61=$ Cents +29.849602	Ratio: 117/115
$62=$ Cents +187.681869	Ratio: 146/131
$63=$ Cents +256.596489	Ratio: 196/169
$64=$ Cents +343.090647	Ratio: 89/73 (JUST)
$65=$ Cents +493.957077	Ratio: 141/106
$66=$ Cents +548.648344	Ratio: 81/59 (JUST)
$67=$ Cents +684.728649	Ratio: 150/101
$68=$ Cents +729.878736	Ratio: 125/82 (JUST)
$69=$ Cents +871.94838	Ratio: 139/84 (JUST)
$70=$ Cents +985.798925	Ratio: 205/116
$71=$ Cents +1049.362941	Ratio: 11/6 (JUST)
$72=$ Cents +1200.	Ratio: 2/1 (JUST)

46. Gamelan Udan Mas (approx) s6,p6,p7,s1,p1,s2,p2,p3,s3,p4,s5,p5
$60=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$61=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$62=$ Cents $+182.403712 \quad$ Ratio: 10/9 (JUST)
$63=$ Cents $+266.870906 \quad$ Ratio: 7/6 (JUST)
$64=$ Cents $+427.372572 \quad$ Ratio: 32/25 (JUST)
$65=$ Cents $+510.367002 \quad$ Ratio: $47 / 35$ (JUST)
$66=$ Cents $+571.725653 \quad$ Ratio: $32 / 23$ (JUST)
$67=$ Cents $+701.955001 \quad$ Ratio: $3 / 2$ (JUST)
$68=$ Cents $+745.786052 \quad$ Ratio: 20/13 (JUST)
$69=$ Cents $+996.089998 \quad$ Ratio: 16/9 (JUST)
$70=$ Cents $+996.089998 \quad$ Ratio: 16/9 (JUST)
$71=$ Cents $+1126.319346 \quad$ Ratio: 23/12 (JUST)
$72=$ Cents $+1200 . \quad$ Ratio: $2 / 1$ (JUST)
$73=$ Cents $+1200 . \quad$ Ratio: $2 / 1$ (JUST)
47. Kraig Grady's 7-limit "Centaur" scale, 1987. See Xenharmonikon 16 $60=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$61=$ Cents $+84.467193 \quad$ Ratio: 21/20 (JUST)
$62=$ Cents +203.910002
Ratio: 9/8 (JUST)
$63=$ Cents +266.870906 Ratio: 7/6 (JUST)
$64=$ Cents $+386.313714 \quad$ Ratio: 5/4 (JUST)
$65=$ Cents $+498.044999 \quad$ Ratio: $4 / 3$ (JUST)
$66=$ Cents $+582.512193 \quad$ Ratio: 7/5 (JUST)
$67=$ Cents $+701.955001 \quad$ Ratio: 3/2 (JUST)
$68=$ Cents $+764.915905 \quad$ Ratio: $14 / 9$ (JUST)
$69=$ Cents $+884.358713 \quad$ Ratio: $5 / 3$ (JUST)
$70=$ Cents $+968.825906 \quad$ Ratio: 7/4 (JUST)
$71=$ Cents $+1088.268715 \quad$ Ratio: $15 / 8$ (JUST)
$72=$ Cents $+1200 . \quad$ Ratio: $2 / 1$ (JUST)
48. Harmonics 1 to 12 and subharmonics mixed $60=$ Cents 0. Ratio: 1/1 (JUST)
$61=$ Cents $+203.910002 \quad$ Ratio: $9 / 8$ (JUST)
$62=$ Cents $+231.174094 \quad$ Ratio: 8/7 (JUST)
$63=$ Cents $+386.313714 \quad$ Ratio: 5/4 (JUST)
$64=$ Cents $+498.044999 \quad$ Ratio: $4 / 3$ (JUST)
$65=$ Cents $+551.317942 \quad$ Ratio: 11/8 (JUST)
$66=$ Cents $+648.682058 \quad$ Ratio: 16/11 (JUST)
$67=$ Cents $+701.955001 \quad$ Ratio: $3 / 2$ (JUST)
$68=$ Cents $+813.686286 \quad$ Ratio: $8 / 5$ (JUST)
$69=$ Cents $+968.825906 \quad$ Ratio: 7/4 (JUST)
$70=$ Cents $+996.089998 \quad$ Ratio: 16/9 (JUST)
$71=$ Cents $+1200 . \quad$ Ratio: $2 / 1$ (JUST)
49. Michael Harrison, piano tuning for "Revelation" (2001), original $1 / 1=\mathrm{F}$, here it is set to C

50. Helmholtz's two-keyboard harmonium tuning untempered, 24 notes per octave $60=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$61=$ Cents $+92.178716 \quad$ Ratio: 135/128
$62=$ Cents $+111.731285 \quad$ Ratio: 16/15 (JUST)
$63=$ Cents $+182.403712 \quad$ Ratio: 10/9 (JUST)
$64=$ Cents $+203.910002 \quad$ Ratio: 9/8 (JUST)
$65=$ Cents $+274.582429 \quad$ Ratio: 75/64 (JUST)
$66=$ Cents $+294.134997 \quad$ Ratio: 32/27 (JUST)
$67=$ Cents $+386.313714 \quad$ Ratio: $5 / 4$ (JUST)
$68=$ Cents $+405.866283 \quad$ Ratio: 512/405
$69=$ Cents $+478.49243 \quad$ Ratio: 675/512
$70=$ Cents $+498.044999 \quad$ Ratio: $4 / 3$ (JUST)

$71=$ Cents +590.223716	
Ratio: $45 / 32$ (JUST)	
$72=$ Cents +609.776284	
$73=$ Ratio: $64 / 45$ (JUST)	
$74=$ Cents +680.448711	
Ratio: $40 / 27$ (JUST)	
$75=$ Cents +772.655001	
Ratio: $3 / 2$ (JUST)	
$76=$ Cents +792.179997	
Ratio: $25 / 16$ (JUST)	
$77=$ Cents +884.358713	
$78=$ Ratio: $128 / 81$ (JUST) $5 / 3$ (JUST)	
$79=$ Cents +905.865003	Ratio: $27 / 16$ (JUST)
$80=$ Cents +996.537429	Ratio: $225 / 128$
$81=$ Cents +1088.268715	Ratio: $16 / 9$ (JUST)
$82=$ Cents +1107.821284	Ratio: $15 / 8$ (JUST)
$83=$ Cents +1178.49371	Ratio: $256 / 160 / 85$ (JUST)
$84=$ Cents +1200.	Ratio: $2 / 1($ JUST)

51. North Indian Gamut, modern Hindustani 12 selected from 22 or more shrutis	
$60=$ Cents 0.	Ratio: $1 / 1($ (JUST)
$61=$ Cents +111.731285	Ratio: $16 / 15$ (JUST)
$62=$ Cents +203.910002	Ratio: $9 / 8$ (JUST)
$63=$ Cents +315.641287	Ratio: $6 / 5$ (JUST)
$64=$ Cents +386.313714	Ratio: $5 / 4$ (JUST)
$65=$ Cents +498.044999	Ratio: $4 / 3$ (JUST)
$66=$ Cents +590.223716	Ratio: $45 / 32$ (JUST)
$67=$ Cents +701.955001	Ratio: $3 / 2$ (JUST)
$68=$ Cents +813.686286	Ratio: $8 / 5$ (JUST)
$69=$ Cents +905.865003	Ratio: $27 / 16$ (JUST)
$70=$ Cents +1017.596288	Ratio: $9 / 5$ (JUST)
$71=$ Cents +1088.268715	Ratio: $15 / 8$ (JUST)
$72=$ Cents +1200.	Ratio: $2 / 1$ (JUST)

52. Carnatic gamut. Kuppuswami: Carnatic music and the Tamils, p. v
$60=$ Cents 0.

$$
\begin{array}{ll}
61=\text { Cents }+98.954592 & \text { Ratio: } 18 / 17 \text { (JUST) } \\
62=\text { Cents }+203.910002 & \text { Ratio: } 9 / 8 \text { (JUST) } \\
63=\text { Cents }+315.641287 & \text { Ratio: } 6 / 5 \text { (JUST) } \\
64=\text { Cents }+394.347297 & \text { Ratio: } 54 / 43 \text { (JUST) } \\
65=\text { Cents }+498.044999 & \text { Ratio: } 4 / 3 \text { (JUST) } \\
66=\text { Cents }+596.999591 & \text { Ratio: } 24 / 17 \text { (JUST) } \\
67=\text { Cents }+701.955001 & \text { Ratio: } 3 / 2 \text { (JUST) } \\
68=\text { Cents }+800.909593 & \text { Ratio: } 27 / 17 \text { (JUST) } \\
69=\text { Cents }+905.865003 & \text { Ratio: } 27 / 16 \text { (JUST) } \\
70=\text { Cents }+1017.596288 & \text { Ratio: } 9 / 5 \text { (JUST) } \\
71=\text { Cents }+1096.302298 & \text { Ratio: } 81 / 43 \text { (JUST) } \\
72=\text { Cents }+1200 . & \text { Ratio: } 2 / 1(\text { JUST) }
\end{array}
$$

53. Observed South Indian tuning of a vina, Ellis (Note that octaves are stretched)

60	$=$ Cents 0.	Ratio: $1 / 1($ JUST $)$	
61	$=$ Cents +97.	Ratio: $8644 / 8173$	
62	$=$ Cents +195.	Ratio: $10974 / 9805$	
63	$=$ Cents +312.	Ratio: $11873 / 9915$	
64	$=$ Cents +397.	Ratio: $3372 / 2681$	
$65=$ Cents +515.		Ratio: $9782 / 7265$	
$66=$ Cents +596.	Ratio: $12731 / 9023$		
$67=$ Cents +692.	Ratio: $13439 / 9011$		
68	$=$ Cents +782.	Ratio: $6031 / 3839$	
69	$=$ Cents +883.	Ratio: $6793 / 4079$	
70	$=$ Cents +997.		Ratio: $4863 / 2734$
71	$=$ Cents +1092.		Ratio: $12599 / 6705$
$72=$ Cents +1207.		Ratio: $15117 / 7528$	

54. 7-limit 12-tone scale
$60=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$61=$ Cents $+111.731285 \quad$ Ratio: 16/15 (JUST)
$62=$ Cents $+203.910002 \quad$ Ratio: 9/8 (JUST)
$63=$ Cents $+266.870906 \quad$ Ratio: 7/6 (JUST)
$64=$ Cents $+386.313714 \quad$ Ratio: 5/4 (JUST)
$65=$ Cents $+498.044999 \quad$ Ratio: $4 / 3$ (JUST)
$66=$ Cents $+582.512193 \quad$ Ratio: 7/5 (JUST)
$67=$ Cents $+701.955001 \quad$ Ratio: $3 / 2$ (JUST)
$68=$ Cents $+813.686286 \quad$ Ratio: $8 / 5$ (JUST)
$69=$ Cents $+933.129094 \quad$ Ratio: 12/7 (JUST)
$70=$ Cents $+968.825906 \quad$ Ratio: 7/4 (JUST)
$71=$ Cents $+1088.268715 \quad$ Ratio: 15/8 (JUST)
$72=$ Cents $+1200 . \quad$ Ratio: $2 / 1$ (JUST)
55. Alternate 7 -limit 12 -tone scale
$60=$ Cents 0.

Ratio: $1 / 1$	
61	$=$ Cents +70.672427
$62=$ Cents +182.403712	Ratio: $25 / 24$ (JUST)
$63=$ Cents +266.870906	Ratio: $10 / 9$ (JUST) $7 / 6$ (JUST)
$64=$ Cents +386.313714	Ratio: $5 / 4$ (JUST)
$65=$ Cents +470.780907	Ratio: $21 / 16$ (JUST)
$66=$ Cents +582.512193	Ratio: $7 / 5$ (JUST)
$67=$ Cents +701.955001	Ratio: $3 / 2$ (JUST)
$68=$ Cents +813.686286	Ratio: $8 / 5$ (JUST)
$69=$ Cents +933.129094	Ratio: $12 / 7$ (JUST)

```
70 = Cents +968.825906 Ratio: 7/4 (JUST)
71 = Cents +1088.268715 Ratio: 15/8 (JUST)
72 = Cents +1200. Ratio: 2/1 (JUST)
```

56. Kurzweil "Just with natural b7th", is Sauveur Just with 7/4
$60=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$61=$ Cents $+70.672427 \quad$ Ratio: 25/24 (JUST)
$62=$ Cents $+203.910002 \quad$ Ratio: 9/8 (JUST)
$63=$ Cents $+315.641287 \quad$ Ratio: 6/5 (JUST)
$64=$ Cents $+386.313714 \quad$ Ratio: 5/4 (JUST)
$65=$ Cents $+498.044999 \quad$ Ratio: $4 / 3$ (JUST)
$66=$ Cents $+590.223716 \quad$ Ratio: $45 / 32$ (JUST)
$67=$ Cents $+701.955001 \quad$ Ratio: $3 / 2$ (JUST)
$68=$ Cents $+813.686286 \quad$ Ratio: $8 / 5$ (JUST)
$69=$ Cents $+884.358713 \quad$ Ratio: 5/3 (JUST)
$70=$ Cents $+968.825906 \quad$ Ratio: 7/4 (JUST)
$71=$ Cents $+1088.268715 \quad$ Ratio: 15/8 (JUST)
$72=$ Cents $+1200 . \quad$ Ratio: $2 / 1$ (JUST)
57.3 and 7 prime rational interpretation of 17-tET

Ratio: 1/1 (JUST)	
$61=$ Cents +62.960904	Ratio: 28/27 (JUST)
$62=$ Cents +140.949098	Ratio: 243/224
$63=$ Cents +203.910002	Ratio: 9/8 (JUST)
$64=$ Cents +294.134997	Ratio: 32/27 (JUST)
$65=$ Cents +357.095901	Ratio: 896/729
$66=$ Cents +435.084095	Ratio: 9/7 (JUST)
$67=$ Cents +498.044999	Ratio: 4/3 (JUST)
$68=$ Cents +561.005903	Ratio: 112/81 (JUST)
$69=$ Cents +638.994097	Ratio: 81/56 (JUST)
$70=$ Cents +701.955001	Ratio: 3/2 (JUST)
$71=$ Cents +764.915905	Ratio: 14/9 (JUST)
$72=$ Cents +842.904099	Ratio: 729/448
$73=$ Cents +905.865003	Ratio: 27/16 (JUST)
$74=$ Cents +996.089998	Ratio: 16/9 (JUST)
$75=$ Cents +1059.050902	Ratio: 448/243
$76=$ Cents +1137.039096	Ratio: 27/14 (JUST)
$77=$ Cents +1200 .	Ratio: 2/1 (JUST)

58. 11-limit 'prime row' from Ben Johnston's "6th Quartet". Not octave repeating, with some very narrow intervals. These are the first 30 pitches:
$0=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$1=$ Cents $+70.672427 \quad$ Ratio: $25 / 24$ (JUST)
```
2 = Cents +182.403712
3 = Cents +274.582429
4=Cents +386.313714
5 = Cents +505.756522
6 Cents +568.717426
7 = Cents +733.721654
8= Cents +772.627428
9= Cents +884.358713
10 = Cents +923.264486
11 = Cents +1088.268715
12 = Cents +1151.229619
13 = Cents +1221.902045
14 = Cents +1333.633331
15 = Cents +1425.812047
16 = Cents +1537.543332
17 = Cents +1656.986141
18= Cents +1719.947045
19 = Cents +1884.951273
20 = Cents +1923.857046
21 = Cents +2035.588332
22 = Cents +2074.494105
23 = Cents +2239.498333
24 = Cents +2302.459237
25 = Cents +2373.131664
26 = Cents +2484.862949
27 = Cents +2577.041666
28= Cents +2688.772951
29 = Cents +2808.215759
30=Cents +2871.176663
Ratio: 10/9 (JUST)
Ratio: 75/64 (JUST)
Ratio: 5/4 (JUST)
Ratio: 75/56 (JUST)
Ratio: 25/18 (JUST)
Ratio: 55/36 (JUST)
Ratio: 25/16 (JUST)
Ratio: 5/3 (JUST)
Ratio: 75/44 (JUST)
    Ratio: 15/8 (JUST)
    Ratio: 35/18 (JUST)
Ratio: 875/432
Ratio: 175/81 (JUST)
Ratio: 875/384
Ratio: 175/72 (JUST)
Ratio: 125/48 (JUST)
Ratio: 875/324
Ratio: 1925/648
Ratio: 875/288
Ratio: 175/54 (JUST)
Ratio: 875/264
Ratio: 175/48 (JUST)
Ratio: 1225/324
Ratio: 30625/7776
Ratio: 6125/1458
Ratio: 30625/6912
Ratio: 6125/1296
Ratio: 4375/864
Ratio: 30625/5832
```

59. 1/9-Harrison's comma mean-tone scale
$60=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$61=$ Cents $+74.23293 \quad$ Ratio: 8315/7966
$62=$ Cents $+192.63798 \quad$ Ratio: 6334/5667
$63=$ Cents +266.870906
Ratio: 7/6 (JUST)
$64=$ Cents +385.27596
Ratio: 6671/5340
$65=$ Cents +503.68101
Ratio: 13025/9737
$66=$ Cents +577.91394
$67=$ Cents +696.31899
$68=$ Cents +770.55192
Ratio: 2632/1885
Ratio: 14567/9743
Ratio: 9743/6243
$69=$ Cents $+888.95697 \quad$ Ratio: 1885/1128
$70=$ Cents $+963.1899 \quad$ Ratio: 13187/7560
$71=$ Cents $+1081.59495 \quad$ Ratio: 1780/953
$72=$ Cents $+1200 . \quad$ Ratio: $2 / 1$ (JUST)
$60=$ Cents $0 . \quad$ Ratio: 1/1 (JUST)
$61=$ Cents $+70.672427 \quad$ Ratio: 25/24 (JUST)
$62=$ Cents $+203.910002 \quad$ Ratio: 9/8 (JUST)
$63=$ Cents $+315.641287 \quad$ Ratio: 6/5 (JUST)
$64=$ Cents $+386.313714 \quad$ Ratio: 5/4 (JUST)
$65=$ Cents $+498.044999 \quad$ Ratio: $4 / 3$ (JUST)
$66=$ Cents $+568.717426 \quad$ Ratio: $25 / 18$ (JUST)
$67=$ Cents $+701.955001 \quad$ Ratio: $3 / 2$ (JUST)
$68=$ Cents $+813.686286 \quad$ Ratio: 8/5 (JUST)
$69=$ Cents $+884.358713 \quad$ Ratio: $5 / 3$ (JUST)
$70=$ Cents $+1017.596288 \quad$ Ratio: 9/5 (JUST)
$71=$ Cents $+1088.268715 \quad$ Ratio: 15/8 (JUST)
$72=$ Cents $+1200 . \quad$ Ratio: $2 / 1$ (JUST)
60. Persian santur tuning. $1 / 1=\mathrm{E}$ in original. Here it is set to C . Note that scale is 8 notes per octave, so it will not map normally to a 12 note keyboard.

60	$=$ Cents 0.	Ratio: $1 / 1$ (JUST)
61	$=$ Cents +129.99971	Ratio: $10727 / 9951$
62	$=$ Cents +345.	Ratio: $4710 / 3859$
63	$=$ Cents +490.00034	Ratio: $5797 / 4368$
64	$=$ Cents +630.00051	Ratio: $8153 / 5666$
65	$=$ Cents +849.99952	Ratio: $13952 / 8539$
66	$=$ Cents +1034.99975	Ratio: $20 / 11$ (just)
67	$=$ Cents +1137.00011	Ratio: $15866 / 8227$
68	$=$ Cents +1200.	Ratio: $2 / 1$ (JUST)
69	$=$ Cents +1329.99971	Ratio: $21454 / 9951$
70	$=$ Cents +1545.	Ratio: $18281 / 7489$
71	$=$ Cents +1690.00034	Ratio: $5797 / 2184$
$72=$ Cents +1830.00051	Ratio: $28347 / 9850$	
73	$=$ Cents +2049.99952	Ratio: $32211 / 9857$
$74=$ Cents +2234.99975	Ratio: $36331 / 9991$	
75	$=$ Cents +2337.00011	Ratio: $38073 / 9871$
$76=$ Cents +2400.	Ratio: $4 / 1(J U S T)$	

62. Vallotti \& Young (Vallotti version)
$60=$ Cents $0 . \quad$ Ratio: 1/1 (JUST)
$61=$ Cents $+94.135 \quad$ Ratio: 10487/9932
$62=$ Cents $+196.09 \quad$ Ratio: 10851/9689
$63=$ Cents $+298.045 \quad$ Ratio: 4679/3939
$64=$ Cents $+392.18 \quad$ Ratio: 3843/3064
$65=$ Cents $+501.955 \quad$ Ratio: 5467/4091
$66=$ Cents $+592.18 \quad$ Ratio: 13863/9847

$$
\begin{array}{lr}
67=\text { Cents }+698.045 & \text { Ratio: } 8182 / 5467 \\
68=\text { Cents }+796.09 & \text { Ratio: } 13019 / 8220 \\
69=\text { Cents }+894.135 & \text { Ratio: } 2427 / 1448 \\
70=\text { Cents }+1000 . & \text { Ratio: } 17189 / 9647 \\
71=\text { Cents }+1090.225 & \text { Ratio: } 18484 / 9847 \\
72=\text { Cents }+1200 . & \text { Ratio: } 2 / 1 \text { (JUST) }
\end{array}
$$

63. LaMonte Young, Tuning of For Guitar '58. 1/1 March '92, inv.of Mersenne lute 1
$60=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$61=$ Cents $+111.731285 \quad$ Ratio: 16/15 (JUST)
$62=$ Cents $+182.403712 \quad$ Ratio: 10/9 (JUST)
$63=$ Cents $+315.641287 \quad$ Ratio: $6 / 5$ (JUST)
$64=$ Cents $+386.313714 \quad$ Ratio: 5/4 (JUST)
$65=$ Cents $+498.044999 \quad$ Ratio: $4 / 3$ (JUST)
$66=$ Cents $+590.223716 \quad$ Ratio: $45 / 32$ (JUST)
$67=$ Cents $+701.955001 \quad$ Ratio: $3 / 2$ (JUST)
$68=$ Cents $+813.686286 \quad$ Ratio: $8 / 5$ (JUST)
$69=$ Cents $+884.358713 \quad$ Ratio: $5 / 3$ (JUST)
$70=$ Cents $+1017.596288 \quad$ Ratio: 9/5 (JUST)
$71=$ Cents $+1088.268715 \quad$ Ratio: 15/8 (JUST)
$72=$ Cents $+1200 . \quad$ Ratio: $2 / 1$ (JUST)

64. LaMonte Young's Well-Tuned Piano	
60	$=$ Cents 0.
Ratio: $1 / 1$ (JUST)	
61	$=$ Cents +176.64591
$62=$ Cents +203.910002	Ratio: $567 / 512$
$63=$ Cents +239.606814	Ratio: $9 / 8$ (JUST)
$64=$ Cents +470.780907	Ratio: $147 / 128$
$65=$ Cents +443.516816	Ratio: $1323 / 1024$
$66=$ Cents +674.690909	Ratio: $189 / 128$
$67=$ Cents +701.955001	Ratio: $3 / 2$ (JUST)
$68=$ Cents +737.651813	Ratio: $49 / 32$ (JUST)
$69=$ Cents +968.825906	Ratio: $7 / 4$ (JUST)
$70=$ Cents +941.561815	Ratio: $441 / 256$
$71=$ Cents +1172.735908	Ratio: $63 / 32$ (JUST)
$72=$ Cents +1200.	Ratio: $2 / 1$ (JUST)

65. Thomas Young - well temperament (1807), also Luigi Malerbi nr. 2 (1794)
$60=$ Cents $0 . \quad$ Ratio: $1 / 1$ (JUST)
$61=$ Cents $+90.224996 \quad$ Ratio: 256/243
$62=$ Cents $+196.09 \quad$ Ratio: 10851/9689
$63=$ Cents $+294.134997 \quad$ Ratio: 32/27 (JUST)
$64=$ Cents $+392.18 \quad$ Ratio: 3843/3064
$65=$ Cents $+498.044999 \quad$ Ratio: $4 / 3$ (JUST)
```
66 = Cents +588.269995
67 = Cents +698.045
68= Cents +792.179997
69=Cents +894.135
70 = Cents +996.089998
71 = Cents +1090.225
72 = Cents +1200.
```

Ratio: 1024/729
Ratio: 8182/5467
Ratio: 128/81 (JUST)
Ratio: 2427/1448
Ratio: 16/9 (JUST)
Ratio: 18484/9847
Ratio: 2/1 (JUST)

